
40th AIAA Aerospace Sciences 
Meeting & Exhibit

14-17 January 2002 / Reno, NV
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics

1801 Alexander Bell Drive, Suite 500, Reston, VA  20191

AIAA 2002-0842

Statistical Analysis of CFD Solutions 
from the Drag Prediction Workshop

M. Hemsch
NASA Langley Research Center
Hampton, VA



AIAA-2002-0842 

 
1 

American Institute of Aeronautics and Astronautics 

Statistical Analysis of CFD Solutions from the Drag Prediction Workshop 
 

Michael J. Hemsch ∗  
NASA Langley Research Center 

Hampton, VA 
 

 
Abstract 

 
A simple, graphical framework is presented for robust 
statistical evaluation of results obtained from N-
Version testing of a series of RANS CFD codes. The 
solutions were obtained by a variety of code 
developers and users for the June 2001 Drag 
Prediction Workshop sponsored by the AIAA Applied 
Aerodynamics Technical Committee. The aerodynamic 
configuration used for the computational tests is the 
DLR-F4 wing-body combination previously tested in 
several European wind tunnels and for which a 
previous N-Version test had been conducted. The 
statistical framework is used to evaluate code results 
for (1) a single cruise design point, (2) drag polars 
and (3) drag rise. The paper concludes with a 
discussion of the meaning of the results, especially 
with respect to predictability, Validation, and 
reporting of solutions. 

 
Nomenclature 

 
ANOM  Analysis of Means 
AOA  angle of attack 

DC   drag coefficient 
CD_PR   pressure drag coefficient 
CD_SF   skin-friction drag coefficient 
CD_TOT   total drag coefficient 
CL  centerline 

LC  lift coefficient 

mC  pitching-moment coefficient 
DPW  Drag Prediction Workshop 
H  ANOM coverage factor 
k  number of data groups 
K  coverage factor for individual values 
M∞  Mach number 

 
n  number of observations in a sample 
pdf  population density function 
RANS  Reynolds-averaged Navier-Stokes 
Re  Reynolds number based on the mean 

aerodynamic chord 
SSD  sample standard deviation 
TM  turbulence model 
x  value of an observation 
x  sample standard deviation 
x%  sample median 
x  sample grand average 
µ  population mean 

µ̂  estimate of the population mean 
σ  population standard deviation 
σ̂  estimate of the population standard 

deviation 
 

Introduction 
 

In June 2001, the AIAA Applied Aerodynamics 
Technical Committee (APATC) conducted a Drag 
Prediction Workshop (DPW) to determine the state of 
the art in the use of computational fluid dynamics 
(CFD), in an industrial setting, for transonic cruise 
drag predictions of subsonic transports. The 
workshop challenge was to compute the lift, drag and 
pitching moment for the DLR-F4 wing-body 
configuration1 ,  2 for three sets of conditions (all at 
Re=3.0 x 106): 
 

1. Cruise at 0.75, 0.5LM C∞ = =  (required) 
2. Drag polar at 0.75M∞ =  (required) 
3. Drag rise at 0.4,0.5,0.6LC =  (optional) 

 
The DLR-F4 wing-body was chosen because of the 
availability of experimental data1, 2 and because it had 
been used for a previous challenge.3 

 
The focus of the workshop was drag prediction 
accuracy. For the cruise point, it was required that 
each submitter use one of the required grids 
generated prior to the workshop announcement. 
Submitters could use their own grids for additional 
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solutions at the cruise point and for the other sets of 
conditions. Additional details about the workshop 
may be found in References 4-9.† The DLR-F4 wing-
body configuration is shown in Figure 1. 
 
The paper is divided into five main sections. The first 
section presents typical customer requirements for 
experimental and computational simulations of 
performance and describes the available experimental 
results for the cruise point.1, 2 In the second section, 
the purpose of the statistical analysis and N-Version 
testing is discussed and several statistical methods are 
presented for comparing the solutions from the 
various codes and users. The second section also 
discusses the robustness of the methods in the face of 
results that differ significantly from the majority. 
Results of the application of the statistical framework 
to the DPW N-Version tests are given in the third, 
fourth and fifth sections. The paper concludes with 
some final remarks. 
 

Customer Requirements and 
Experimental Results 

 
Customer requirements for wind tunnel 
reproducibility can vary significantly depending upon 
the intended use of the data, but there seems to be 
industry-wide consensus on the needs for 
performance testing of subsonic civil transports.10, 11 
Typical data quality goals are given in Table 1 for 

2σ±  coverage. 
 
For purposes of comparison with the above data 
quality goals and with the results of the DPW, typical 
corrected results from wind tunnel testing1, 2 of the 
DLR-F4 wing-body configuration are presented in 
Table 2 for the primary DPW challenge condition of 
cruise at 60.5, 0.75, Re 3.0 10LC M x∞= = = . The 
drag coefficient values in the data tables on the 
computer disks that are associated with Ref. 1 are 
rounded to 10 counts. For the purposes of the DPW, 
the round-off error was reduced considerably by use 
of an enhancement technique developed by 
Vassberg.12 The results in Table 2 were obtained by 
linear interpolation in the lift and pitching moment 
curves and in the drag polars plotted as functions of 
the lift squared. Note that the scatter values of the 
wind tunnel drag and pitching moment results are 

                                                             
† One of the references accessible at the website of Ref. 4 is 
the original talk on which this paper is based. Some of the 
results in that talk are slightly different in this paper 
because different estimators were used. The differences are 
not statistically significant. 

considerably larger than the requirements listed in 
Table 1. 
 
Multiplying the scatter in the angle of attack, for 
which 0.5LC = , by the lift-curve slope (roughly 0.12 
deg.-1) gives the likely scatter of LC  if the angle of 
attack were held constant. That scatter value is 

0.005±  for 2σ±  coverage and is typically 
acceptable based on the requirements given in 
Table 1.  

 
Statistical Approach for N-Version Testing 

 
Background 
 
For this paper, the point of view is taken that the 
scatter (dispersion) of the results computed by the 
participants for any given output coefficient at a 
given set of conditions represents the reproducibility 
of the computational process just as if the individual 
computed realizations were obtained from a 
replicated measurement process. In measurement, 
such a process is called N-th Order replication.13 In 
computation, a similar process is called N-Version 
testing.14-16 Reproducibility is defined17 for 
measurement as closeness of the agreement between 
the results of measurements of the same measurand 
carried out under changed conditions of 
measurement. The changed conditions of 
"measurement" for the DPW are, of course, the 
different codes, solution methods, turbulence models, 
grids, computing platforms, observers (people who 
carried out the computational process) and so on. 
 
For this type of analysis, no individual outcome 
(computational realization) is considered the "right" 
answer or "best" result. To be specific, the collective 
computational process is considered to consist of all 
of the individual processes used and the dispersion of 
the results to be noise in that collective computational 
process.∗ ∗  This viewpoint has been suggested by 
Youden18, 19 of the former National Bureau of 
Standards for precision measurements of physical 
constants at different laboratories. It is also consistent 
with the frequentist20 interpretation of probability and 
with the new international standard for reporting 
measurement uncertainty.17 For reporting purposes, 
the new standard17 rejects the categorization of errors 
into random and systematic in favor of two other 
classes: Those which are evaluated using 
conventional statistical methods (Type A) and those 
                                                             
∗∗ It should be noted that, for each turbulence model, a 
distinct true value would be expected in the limit. 
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which are not (Type B). With the above definition of 
a collective computational process, a Type A analysis 
is used to evaluate what would normally be thought 
of as systematic differences. 
 
The above approach has several benefits: 
 

1. Credible quantitative estimates can be made 
of the scatter and the mean of the virtual 
population of possible computational 
outcomes, including determining if some of 
the codes are not performing as well as the 
majority. 

2. Quantitative predictions of the performance 
of each code can be made by using all of 
them together as a collective. 

3. It can be determined if the scatter is small 
enough to be useful to designers. 

4. Otherwise hidden effects and opportunities 
for process improvement can be revealed by 
"seeing into" the scatter. 

5. Uncertainty measures for comparison of the 
collective CFD results to experiment can be 
obtained. 
 

By doing this, together with continual improvement 
of the codes and processes, the possibility is created, 
across the design community, of making CFD 
predictions with credible, enduring, statements of 
reproducibility.  
 
In this paper, three types of statistical graphical 
methods are used for analysis of the DPW N-Version 
testing results: 
 

1. Running records of individual computational 
outcomes, together with centerlines and 
scatter bands. 

2. Histograms of individual outcomes. 
3. Analysis of Means (ANOM). 
 

The first two methods are valuable because they 
display all of the data in the presence of the scatter.21  
One of the biggest concerns in statistical analysis is 
possibly drawing incorrect conclusions from 
aggregated data.21-26  The advantage of running 
records and histograms is that they display all of the 
data and they do it in quite different ways, thus 
allowing the analyst to check conclusions drawn from 
one or the other display. In addition, several 
questions are asked of the first two methods: 
 

1. Which solutions constitute a reasonable 
"core" set and what does that core set look 
like? 

2. Which solutions lie outside that core? 
3. What is the central location of the core 

solutions? 
4. What is the dispersion of the core solutions? 

 
The third method is useful because it allows 
discernment of possibly significant results despite the 
presence of scatter.22 
 
In the rest of this section, these three graphical 
analysis methods are reviewed, prior to analyzing the 
results of the DPW challenge in the following three 
main sections. 
 
Method 1 - Running Records of Individual 
Outcomes 
 
In experimental measurement of repeatability and 
reproducibility, it is useful to display the data values 
on the vertical axis and the time of the data point 
acquisition on the horizontal axis.24 However, since 
time is irrelevant in the DPW challenge, the 
individual solution values are plotted herein as a 
function of an integer index. The order of the plotting 
of the solution values along the abscissa was 
randomly assigned. 
 
To enhance the possibility of discerning significant 
results in the running record, an estimate of the 
population mean (µ̂ ) of the plotted data points is 
made and shown on the graph as a centerline. In 
addition, scatter limits are placed about the centerline 
as follows: 

 
ˆ ˆLower Limit
ˆ ˆUpper Limit

K
K

µ σ
µ σ

= −
= +

 (1) 

where σ̂  is an estimate of the population standard 
deviation and K  is an appropriate coverage 
factor.21-25 The area between the scatter limits is 
considered to be a "noise zone" within which it is not 
possible to discern significant results for the 
individual values - at least not on the basis of 
statistics. 
 
To summarize, there are six steps for the preparation 
of individual value running records for graphical 
statistical analysis: 
 

(1) Graphically display the outcomes, for 
supposedly identical conditions, in random 
order in a pseudo-time series. 

(2) Estimate the population mean and standard 
deviation of the outcomes using a robust 
method. 
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(3) Display the estimate of the population mean 
as the centerline on the graph. 

(4) Establish limits for the scatter of the 
individual outcomes based on the estimated 
population standard deviation and a 
reasonable coverage factor. 

(5) Display the limits obtained in step 4 as 
lower and upper bounds on the graph. 

(6) Look for significant results, i.e. outcomes 
that are outside the noise zone delineated by 
the scatter limits. Such outcomes could 
represent poor solutions relative to the 
others, significant differences in solution 
approaches, or opportunities for process 
improvement. 

 
Robust estimation of the population parameters. 
The only two population parameters usually of 
interest in the estimation of uncertainty are the mean 
and the standard deviation.24 Conventionally, these 
parameters are estimated using the sample average 

 
1

1ˆ
n

i
i

x x
n

µ
=

= ≡ ∑  (2) 

and the sample standard deviation (SSD) 

 2

1

1ˆ ( )
1

n

i
i

SSD x x
n

σ
=

= ≡ −
− ∑  (3) 

Although, these estimators are the most efficient, 
they can give significantly offset estimates of the 
population mean and grossly inflated estimates of the 
population standard deviation if the sample is 
contaminated with values which do not belong to the 
population of interest.21, 23, 27 For the purposes herein, 
the simplest way to achieve robustness is to use the 
sample median to estimate the population mean23, 27 

 ( 1 ) /2

/ 2 ( / 2 ) 1

ˆ

( )

0.5( ) ( )
n

n n

x
x x n odd

x x n even

µ

+

+

=
≡

≡ +

%
%  (4) 

and the sample median absolute deviation (MAD)27,28 
to estimate the population standard deviation 

 ( )ˆ 1.483 median
1 i

n
x x

n
σ = −

−
%  (5) 

 
Establishing the limits. For this paper, limits for 
judging the significance of individual outcomes will 
be established at 100:1 odds, i.e. observations would 
not be found outside the limits more than one time in 
100 in the long run by chance (99% coverage). Since 
there will never be enough observations for this type 
of application to reasonably determine the population 
probability density function (pdf), a distribution will 
have to be selected for use as a guide in determining 

the coverage factor and the Normal distribution is a 
convenient choice. 
 
With the Normal distribution as a guide and with 
99% coverage (100:1 odds) for infinite degrees of 
freedom, 2.58K =  for insertion into the scatter 
limits given by Eqs. 1. 
  
Method 2 - Histograms of Individual Values 
 
This statistical graphics method has been used to 
great effect for roughly 200 years.26 The histogram 
presents a very different pattern of the data values to 
the eye and, hence, may reveal significant results that 
would otherwise be obscured in tables or a running 
record.21, 26 Detailed discussions on the construction 
and use of histograms are given in References 23 and 
25. The following descriptive comments are taken 
directly from Reference 23: 
 
The most common form of the histogram is obtained 
by splitting the range of the data into equal-sized bins 
(called classes). Then, for each bin, the number of 
points from the data set that fall into each bin are 
counted. That is  
 
     Vertical axis: Frequency (i.e., counts for each bin) 
     Horizontal axis: Response variable 
 
The histogram can be used to answer the following 
questions [qualitatively]:  
 

1. What kind of population distribution do the 
data come from?  

2. Where are the data located?  
3. How spread out are the data?  
4. Are the data symmetric or skewed?  
5. Are there outliers in the data? 

 
For the analysis of computational (or experimental) 
outcomes, There are rarely enough observations to 
determine skewness or the form of the population 
distribution itself. Of course, an attempt must be 
made to determine possible outliers and multiple 
modes. For single-event data sets such as the DPW 
results, outliers suggest mistakes or solution methods 
significantly different from the core group while 
multiple modes may suggest significant effects 
buried in the scatter.‡ The methods of the next two 
subsections are designed to address the latter. 
 
                                                             
‡ For data obtained for an ongoing process, it would be 
more appropriate to interpret "outliers", i.e. points outside 
the limits, as indications of changes in the process. 
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Method 3 - Analysis of Means (ANOM) 
 
The Analysis of Means (ANOM)22, 29 is a graphical 
statistical technique used for comparison of the 
averages of sets of supposedly similar results in the 
presence of noise. For comparisons of just two 
averages, it is identical, in numerical result, to a 
hypothesis test on means.30 The ANOM method is 
more general, however, since it can be used for 
comparison of more than two averages and, of 
course, it is graphical. 
 
The ANOM decision limits are given by Wheeler22, 29 
as 

 
ˆLower Limit:  /

ˆUpper Limit:  /

x H n

x H n

σ

σ

−

+
 (6) 

where x  is the grand average of the sample sets and 
H is a function of the coverage desired, the degrees of 
freedom for the estimate of the population standard 
deviation, and the number of sets of averages being 
compared, k . Note that, if the number of 
observations in the sets of sample averages are 
different, the limits will be different because of the 

n  in the denominator of Eqs. 6. Note also that, 
once again, it is necessary to choose a pdf for a guide 
and again the Normal distribution is selected. 
 
As with the interpretation for a running record of 
individual values, the distance between the ANOM 
decision limits represents the noise of the process 
within which the averages cannot be distinguished - 
at least not statistically. For the ANOM analyses in 
this paper and for the analysis of sample standard 
deviations described in the next subsection, an 
exploratory level of coverage - 90% - will be used 
because the intention is to look for possible 
opportunities for improvement. Replicating the 
process will determine if the effects suggested by the 
statistical techniques are real.29 

 
Cruise Point at 0.5, 0.75LC M∞= =  

 
For the cruise point condition, the solution statistics 
are as follows §: 
 

• 14 codes were used. 
o 7 structured-grid 
o 6 unstructured-grid 
o 1 Cartesian-grid (Euler + integral 

boundary layer) 

                                                             
§ For this paper, only the solutions provided to the DPW 
committee before the workshop were used. 

• 35 solutions were computed 
o 24 structured 
o 10 unstructured 
o 1 Cartesian 

• 3 types of turbulence models were used 
o 17 Spalart-Allmaras 

§ 8 structured-grid 
§ 9 unstructured-grid 

o 17 two-equation 
§ 16 structured-grid 
§ 1 unstructured-grid 

o 1 integral boundary layer 
• 21 solutions used the provided grids 
• 14 used other grids 

 
This breakdown will be used to attempt to determine 
possible sources of variation in the solutions. 
 
Analysis of all drag results 
 
Total drag. The cruise point solutions for the total 
drag are shown in the running record and histogram 
of Figure 2 plotted at random, together with the 
centerline and limits obtained as described above 
(median and MAD) and with the experimental results 
from Table 2. The number shown centered just below 
each bin is the upper value for that bin interval. 
 
The solutions whose values are very low or very high 
relative to the core group are identified in the 
histogram by their running record solution index for 
easy comparison. For both the running record and the 
histogram, it seems clear that there is a central core 
with a wide spread on the order of 50-80 counts, 
together with five solutions that are definitely outside 
that core. The core population parameters as 
estimated by the median and MAD for all of the 
solutions are given in Table 3. 
 
Pressure and skin-friction drag. The cruise point 
solutions for the pressure and skin-friction drag are 
shown similarly in Figures 3 and 4 plotted with the 
same index as Figure 2. Note that the histograms of 
Figures 3 and 4 show that it is not as easy to decide 
which drag component solutions are in the core group 
or outside it when they lie close to the limits. The 
core population parameters as estimated by the 
median and MAD for all of the solutions are given in 
Table 3. 
 
The breakdown on the solutions/codes that had the 
total drag or one of its components outside the limits 
is as follows: 
 

• 7 out of 35 solutions (20%) 
• 6 out of 14 codes (43%) 
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• 4 out of the 21 solutions on the provided 
grids (19%) 

• 3 out of the 14 solutions on other grids (21%) 
 
Overall, there appears to be no significant difference 
in either location or scale between the drag solutions 
carried out on the provided grids and solutions 
carried out on grids developed or improved by the 
participants. However, discussion during the 
workshop revealed that the provided grids were not 
well-suited to some of the codes. 
 
Analysis of all AOA results 
 
The cruise point solutions for the AOA values are 
shown in Figure 5. The breakdown of solutions/codes 
that had values outside the limits is as follows: 
 

• 7 out of 35 solutions (20%) 
• 7 out of 14 codes (50%) 
• 4 out of the 21 solutions on the provided 

grids (19%) 
• 3 out of the 14 solutions on other grids (21%) 

 
A summary of the location and scale values for the 
cruise point AOA solutions is given in Table 4. 
Again, there does not seem to be any significant 
effect of provided versus participant-generated grids 
on the medians of the two types of solutions. 
 
Note that the difference between the estimated 
computed AOA location and the experimental 
location is 0.44 degrees which corresponds to an 
over-prediction of the lift coefficient of about 10%. 
The estimated standard deviation of 0.13 degrees 
corresponds to an estimated standard deviation for 
the lift coefficient of roughly 0.02. 
 
Analysis of all pitching-moment results 
 
The cruise point solutions for the pitching-moment 
values are shown in Figure 6. The breakdown of 
solutions/codes that had pitching-moment values 
outside the limits is as follows: 
 

• 8 out of 35 solutions (23%) 
• 7 out of 14 codes (50%) 
• 4 out of the 21 solutions on the provided 

grids (19%) 
• 4 out of the 14 solutions on other grids (29%) 

 
A summary of the location and scale values for the 
cruise point pitching-moment solutions is given in 
Table 4. As with the drag and AOA results, there 

does not seem to be any significant effect of provided 
versus participant-generated grids on the medians of 
the two types of solutions. 
 
Note that the difference between the estimated 
computed location and the experimental location is 
0.03 which corresponds to an over-prediction of the 
static margin of roughly 6% of the mean 
aerodynamic chord. 
 
Effect of turbulence model and grid type 
 
If the five total-drag outlier solutions, the Cartesian 
integral-boundary-layer solution and the two-
equation unstructured grid solution are deleted, 28 
cruise-point solutions are left that break down as 
follows: 
 

1. 7 solutions using the Spalart-Allmaras 
turbulence model on unstructured grids (3 
codes with 4 observers) 

2. 7 solutions using the Spalart-Allmaras 
model on structured grids (2 codes with 4 
observers) 

3. 14 solutions using a two-equation model on 
structured grids (6 models and 5 codes with 
7 observers) 

 
To compare these solutions and attempt to determine 
if there are significant effects due to turbulence 
model and grid type, the ANOM method described 
above will be used. First, the sample averages (Eq. 
(2)) and standard deviations (Eq. (3)) for each of the 
three distinct sets of values are calculated.¶ Second, 
those values are pooled to obtain x  and σ̂ . The 
results are given in Table 5 for the total drag, the two 
drag components, the angle of attack at 0.5LC = , 
and the pitching moment. 
 
To complete the ANOM statistical graph, it is noted 
that there are three sets of averages to compare for 
each type of outcome and 25 degrees of freedom (28 
observations divided into 3 sets). Furthermore, it is 
desired to compare the averages with a coverage of 
90%. This gives 1.76H = .22, 29 The ANOM results 
are shown in Figures 7-11, together with the 
corresponding running records (at 99% coverage). 
The randomly assigned index for the running records 
is different from the index previously used in Figures 
2-6. 

                                                             
¶ The robust, but less efficient, estimators of the previous 
analyses are not needed because the major outliers have 
been deleted. 
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Effect of turbulence model on drag. Judging from 
both the running record and ANOM charts of Figure 
7, there does not seem to be a significant effect of the 
two types of turbulence model (groups 2 and 3) on 
the total drag. However, the pressure and skin-
friction component comparisons, Figures 8 and 9, 
show a different story. The results from the two 
model types seem to be (barely) significantly offset 
by about 10-12 drag counts but with opposite sign. 
This result suggests that it would be worthwhile to 
investigate further. 
 
Effect of grid type on drag. Judging from both the 
running record and ANOM charts of Figure 7, there 
does seem to be a significant effect on the total drag 
of the two grid types (groups 1 and 2), using the 
Spalart-Allmaras turbulence model. Comparing the 
drag component results in Figures 8 and 9, it is seen 
that the effect is due to a significant difference in the 
skin friction drag of 15 counts. 
 
Effect of turbulence model and grid type on AOA 
and mC . Considering both the running records and 
the ANOM charts of Figures 10 and 11, there does 
seem to be a significant effect of turbulence model 
(groups 2 and 3), but not grid-type (groups 1 and 2), 
on the angle of attack and pitching moment, at least 
for the grids used in the present study.  
 

Drag Polar for 0.75M∞ =  
 
The required drag polars were fit in the linear range 
( 0.15 0.40LC = − ) as follows: 

 
@

L L L

D D L L

C C C

C C C k C
α
α= +

= +
0

0

2
 (7) 

The available experimental results1, 2 were fit as well. 
The running records and histograms of the fit 
parameters, , , @ ,L L D LC C C C k

α0 0
, for all of the 

available solutions are given in Figures 12-15. The 
estimated values of the population means and 
standard deviations are given in Table 6, together 
with the estimates from the three wind tunnel tests. 
The running records and histograms appear to be 
quite similar to those displayed earlier for the cruise 
point condition. (Note that the solution index is 
different from the two previously used.) 
 
The estimated standard deviations for the computed 
(and experimental) fit intercepts are not surprising 
given the results discussed above for the cruise point 
condition. However, the estimates of the 

computational and experimental population standard 
deviations for the fit slopes, ,LC k

α
, seem to be 

considerable larger than would be expected from 
conventional wisdom. 
 
The breakdown on the fit parameters that are outside 
the limits given by the median and MAD for the 27 
polars is as follows: 
 

• For LC
0
, four (15%) 

• For LC
α

, two (7%) 

• For @D LC C
0

, four (15%) 

• For k , two (7%) 
 

Drag Rise at 0.4,0.5, 0.6LC =  
 
Eight drag rise solutions for all three lift-coefficient 
values were provided to the workshop committee: 
seven observers using five codes, two turbulence 
models (Spalart-Allmaras and Wilcox k ϖ− ) and 
both grid types. The solutions, together with 
experimental data inferred from the drag polar fits, 
are shown in Figure 16. Note that one of the solution 
drag-rise curves is considerably outside the scatter of 
the other solutions. Also note that the total drag 
appears to be under-predicted for the highest , LM C∞  
combination (0.8, 0.6), but otherwise seems to scatter 
reasonably about the experimental data. 
 
For the type of flows encountered in this challenge, it 
seems reasonable to ask if there is any effect of the 
Mach number and lift coefficient on the scatter. To 
that end, the SSD's of the solutions at each , LM C∞  
combination (not including the "structured Wilcox 2" 
solution) are shown in Figure 17. 
 
There are several points worth discussing: 
 

1. The computed SSD's lie within a band of 3 
counts except for the two highest Mach 
numbers for 0.6LC = . 

2. The estimated population standard deviation 
for the drag rise points is about half that of 
the estimates obtained for the cruise point 
and drag polar analyses. 

3. The estimated computational and 
experimental population standard deviations 
differ by roughly a factor of two. 

 
The first observation suggests the possibility that 
some additional source of variation manifests itself 
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for the highest , LM C∞  combinations. Perhaps the 
shock has become strong enough to create significant 
flow separation. This possibility could be checked by 
comparing the solutions for the lower and higher 
SSD's. The second observation is probably the result 
of fewer opportunities for variation to be expressed. 
Seven drag rise solutions were used for this analysis 
versus 35 and 27 for the cruise point and drag polar 
analyses. The third observation suggests that more 
work is needed to reduce the computational scatter 
before validation is possible to the accuracy of the 
experimental data. 
 

Final Remarks 
 
Statistical method. One aim of the analysis in this 
paper has been to determine if the replicated 
outcomes appear to have been drawn at random from 
a single (virtual) population. If so, it is meaningful to 
talk about the parameters of the population of the 
collective, including the mean and the standard 
deviation. It is also then meaningful to talk about 
quantifiable predictability. But, it should be 
remembered that the analysis herein was for a single 
data set. Hence, any conclusions must be considered 
tentative, i.e. exploratory. Confirmatory results can 
only be obtained by determining that the CFD results 
for the population parameters are predictable, i.e. 
stable, and that requires established processes and 
repeating the processes over time. 
 
One can check on the stability of any process, 
including CFD, by making the running record of 
individual values into a true time series of repeated 
outcomes and tracking it as a process behavior 
chart.21 With these caveats, it does seem that using 
the median to estimate the location and MAD to 
estimate the scale did allow discernment of outlier 
solutions in the running records and histograms 
without losing the meaning of the "core" solutions. 
And there do seem to be credible values of the CFD 
population parameters of interest for the outcomes 
studied. Again, whether these values are durable can 
only be seen by repeating this exercise. 
 
The analysis also suggests that some set of best 
practices and quantitative sanity checks is needed to 
avoid outliers, especially those that might show up 
when the luxury of multiple solutions from diverse 
codes and models - or even grid convergence - is not 
available. The continued existence of such outliers 
would force acceptance of much bigger numbers for 
the scatter. For example, for σ̂  for the cruise point 
condition, the changes would be 

 
• CD_TOT: 51 counts versus 21 counts 
• AOA: 0.37 deg versus 0.13 
• CM: 0.040 versus 0.008 

 
Unfortunately, even the scatter of the core solutions 
is unacceptable compared to the oft-stated 
requirements of the user community10, 11 and for 
reasonable validation as well. 
 
Validation. Although this paper is devoted to 
estimating the quality of the DPW CFD solutions as a 
collective, the readers may be tempted to note that 
the agreement of the estimated computational and 
experimental population means of the drag 
coefficient (0.0293 vs. 0.0286) is not too excessive 
(only 2% difference). However,  consider that 
comparison in the light of the scatter levels. 
Following the suggestion of Coleman and Stern31, 
define 
 ˆ ˆCFD EXPµ µ∆ ≡ −  (8) 
An error propagation analysis31, 32 for Eq. (8) gives 

 2 2
ˆ ˆˆ ˆ ˆ
CFD EXPµ µσ σ σ∆ = +  (9) 

From Table 3 and excluding the outliers, the 
following values for the terms under the radical in 
Eq. (9) are obtained: 

 

ˆ

ˆ

ˆ 0.0021/ 0.0021/ 30

0.00038

ˆ 0.0004/ 0.0004/ 3

0.00023

CFD

EXP

CFD

EXP

n

n

µ

µ

σ

σ

= =

=

= =

=

 (10) 

Substituting the above results into Eq. (9) gives 
 ˆ 0.00044σ ∆ =  (11) 
Hence, the 2σ±  confidence interval for the 
difference in the population means for the cruise 
point condition can be written as 

 
0.0293 0.0286 0.00088
0.0007 0.0009

CI = − ±
= ±

 (12) 

Thus, while it is true that the confidence interval, Eq. 
(12), does include zero, it must be stated that the 
validation is only at a level of 9±  counts.31 
 
Reporting of CFD results. Given the results of the 
DPW and the analysis in this paper, the 
recommendations in Ref. 25 for the presentation of 
quality control data seem to the author to apply to 
CFD outcomes as well: 
 

• Present as a minimum, the average, the 
standard deviation, and the number of 
observations. Always state the number of 
observations. 
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• Present as much evidence as possible that the 
data were obtained under controlled 
conditions. [See Refs. 21-25.] 

• Present relevant information on precisely (a) 
the field within which the measurements are 
believed valid25 and (b) the conditions under 
which they were made. 

 
Presenting CFD results in such a way, of course, 
requires obtaining results, in a collective sense, for 
diverse codes, grids, turbulence models and 
observers. It is also very likely the best way to 
determine the best practices needed to reduce the 
present levels of scatter to acceptable levels. 
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Coefficient Increments Absolute 

LC  0.005 0.01 

DC  0.00005 (1/2 count) 0.0001 (1 count) 

mC  0.0005 0.001 

 
Table 1. Typical (design) customer uncertainty goals ( 2± σ ) for performance simulations.10, 11 

 
 

 

Source Variable NLR ONERA DRA Sample 
Mean 

Sample 
Median 

Sample 
Range Use 

Original 
data 

Alpha, 
deg 0.153 0.192 0.181 0.175 0.181 0.039 0.18±0.04  

Enhanced DC , 
counts 

288 289 281 286 288 8 286±8  

Original 
data mC  -.130 -.126 -.137 -.131 -.130 .011 -0.13±0.01  

 
Table 2. Experimental results from three tunnels for 0.5, 0.75∞= =LC M .1, 2  

(The uncertainty is estimated at a coverage of 2± σ .) 
 
 
 

 CD_PR CD_SF CD_TOT Experiment 

Estimate of the 
population mean 

0.0166 0.0134 0.0293 0.0286 

Estimate of the population 
standard deviation 0.0014 0.0015 0.0021 0.0004 

 
Table 3. Breakdown of location and scale for the cruise point drag solutions. The median and MAD are used to 

estimate the population parameters for the computations. 
 
 
 

 AOA, deg 
(CFD) 

AOA, deg 
(Exp.) 

mC  
(CFD) 

mC  
(Exp.) 

Estimate of the 
population mean -0.26 0.18 -0.160 -0.13 

Estimate of the population 
standard deviation 0.13 0.02 0.0084 0.005 

 
Table 4. Breakdown of location and scale for the cruise point AOA and pitching-moment solutions. The median and 

MAD are used to estimate the population parameters for the computations. 
 



12 
American Institute of Aeronautics and Astronautics 

 
 
 
Set TM Grid CD_TOT CD_PR CD_SF AOA, deg Cm 

   x  S  x  S  x  S  x  S  x  S  

1 SA Unstr. 0.0284 0.00061 0.0162 0.00053 0.0123 0.00048 -0.33 0.072 -0.161 0.0058 

2 SA Str. 0.0299 0.00108 0.0162 0.00090 0.0138 0.00024 -0.28 0.051 -0.163 0.0020 

3 2E Str. 0.0298 0.00201 0.0172 0.00141 0.0126 0.00144 -0.14 0.196 -0.153 0.0111 

Pooled value 0.0295 0.00157 0.0167 0.00114 0.0128 0.00107 -0.22 0.148 -0.158 0.0086 
 

Table 5. Values used for ANOM analysis of cruise point data. 
  

Parameter CFD EXP CFD EXP 

 µ̂  σ̂  

0LC  0.531 0.473 0.021 0.003 

αLC  0.120 0.114 0.0026 0.0019 

@ 0=D LC C  0.0198 0.0188 0.0016 0.0005 

k  0.0365 0.0374 0.0018 0.0040 
 

Table 6. Results from fits to computational and experimental drag polars. (The experimental 
values were obtained using the sample averages and standard deviations.) 

 

 
 

Figure 1. - Geometry of DLR-F4 model used for the N-Version testing. 
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(a)  Running record. 

 

 
(b)  Histogram  (Each bin covers 10 drag counts.) 

 
Figure 2.  All total drag solutions at LC 0.5, M 0.75∞= = . Median + MAD + 100:1 limits. 
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(a)  Running record. 

 

 
(b)  Histogram  (Each bin covers 10 drag counts.) 

 
Figure 3.  All pressure drag solutions at LC 0.5, M 0.75∞= = . Median + MAD + 100:1 limits. 

 
 

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20 25 30 35

Solution Index 1

C
D

_P
R

Provided grids Other grids Median

Lower limit Upper limit

0

2

4

6

8

10

12

14

0.
01

0

0.
01

2

0.
01

4

0.
01

6

0.
01

8

0.
02

0

0.
02

2

0.
02

4

0.
02

6

0.
02

8

0.
03

0

0.
03

2

0.
03

4

0.
03

6

Bin

Fr
eq

ue
nc

y

S
35

S
3,

 S
31

S
33

S
21

S
10

Lo
w

er
 L

im
it

U
pp

er
 L

im
itCL



15 
American Institute of Aeronautics and Astronautics 

 
(a)  Running record. 

 

 
(b)  Histogram  (Each bin covers 10 drag counts.) 

 
Figure 4.  All skin-friction drag solutions at LC 0.5, M 0.75∞= = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers 0.1 degrees.) 

 
Figure 5. All AOA results at LC 0.5, M 0.75∞= = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers a delta CM of 0.01 degrees.) 

 
Figure 6. All pitching-moment results at LC 0.5, M 0.75∞= = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 

 
(b) Analysis of Means. 

 
Figure 7. Total drag. Analysis of turbulence model and grid-type effects at LC 0.5, M 0.75∞= = . 
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(a) Running record. 

 

 
(b) Analysis of Means. 

 
Figure 8. Pressure drag. Analysis of turbulence model and grid-type effects at LC 0.5, M 0.75∞= = . 
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(a) Running record. 

 

 
(b) Analysis of Means. 

 
Figure 9. Skin-friction drag. Analysis of turbulence model and grid-type effects at LC 0.5, M 0.75∞= = . 
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(a) Running record. 

 

 
(b) Analysis of Means. 

 
Figure 10. Angle of attack. Analysis of turbulence model and grid-type effects at LC 0.5, M 0.75∞= = . 
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(a) Running record. 

 

 
(b) Analysis of Means. 

 
Figure 11. Pitching moment. Analysis of turbulence model and grid-type effects at LC 0.5, M 0.75∞= = . 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers a delta CL0 of 0.02.) 

 
Figure 12. Lift-curve intercept. Drag polars at M 0.75∞ = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers a delta CLA of 0.002.) 

 
Figure 13. Lift-curve slope. Drag polars at M 0.75∞ = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers a delta CD@CL=0 of 0.002.) 

 
Figure 14. Drag-curve intercept. Drag polars at M 0.75∞ = . Median + MAD + 100:1 limits. 
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(a) Running record. 

 
 

 
(b) Histogram. (Each bin covers a delta k of 0.002.) 

 
Figure 15. Drag-curve slope. Drag polars at M 0.75∞ = . Median + MAD + 100:1 limits. 
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(a) CL = 0.4 

 

 
(b) CL = 0.5 

 

 
(c) CL = 0.6 

 
Figure 16. Comparison of drag rise solutions. 
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Figure 17. Running record of estimated standard deviations from drag rise studies. 

 
 

 
Figure 18. Comparison of required, experimental and computational 

estimated population standard deviations. 
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